BALANCES DE ENERGÍA


diagrama.jpg



Calor: Energía que fluye como resultado de una diferencia de temperatura entre dos sistemas o cuerpos.

Temperatura: Es la medida del promedio de la energía cinética de las moléculas.

Trabajo: Energía que fluye en respuesta a cualquier cambio que no sea una diferencia de temperatura, como una fuerza o un voltaje.

Ley de la conservación de energía (Primera ley de la termodinámica): “La energía no se crea ni se destruye, solo se transforma”

Energía interna (U): Es la energía que contiene cada uno de los elementos de masa que entran y salen de un proceso; no tiene valor absoluto, solo se calculan cambios en la energía interna.

Matemáticamente
formula_energia_interna.JPG
Dónde Cv: Capacidad calorífica a volumen constante
Entalpia (H): Es la variación de dos variables, las cuales son energía interna y energía de flujo; La entalpia no tiene valor absoluto, solo se puede calcular los cambios en la entalpia.

H = U + PV
H = f(T,P)

FORMULA_ENTALPIA_1.JPG

∆H = Cp∆T
Cp = a + bT + CT2

Para gases:
CAPACIDAD_CALORIFICA_A_PRESION_CONSTANTE.JPG

CAPACIDAD_CALORIFICA_DE_UNA_MEZCLA_A_PRESION_CONSTANTE.JPG
Dónde:
yi: Fracciones másicas o molares del componente i
Cpi: Capacidad calorífica del componente i
Para productos alimenticios
Cp = 1,675 + 0,025(%H2O)
- Productos cárnicos con contenido de humedad entre 26 y 100%
- Zumos de frutas %humedad > 50%


CAPACIDAD_CALORIFICA_DE_UN_ALIMENTO_A_PRESION_CONSTANTE.JPG
Dónde:
- fraccion_masica_de_los_carbohidratos.JPG: Fracción másica de los carbohidratos
- fraccion_masica_de_las_proteinas.JPG: Fracción másica de las proteínas
- fraccion_masica_de_las_grasas.JPG: Fracción másica de las grasas
- fraccion_masica_de_las_cenizas.JPG: Fracción másica de las cenizas
- fraccion_masica_del_agua.JPG: Fracción másica del agua


cap6-1.png
cap6-2.png
Cap_6-_3.png
Cap_6-_4.png
La energia total de la corriente de entrada, mas el calor adicionado, es igual a la energia total de la corriente de salida
mas el trabajo realizado por el sistema.
Cap_6-_5.png

En un proceso se pelan papas mediante vapor de agua. El vapor se suministra a razón de 4 Kg/100 Kg papas sin pelar. Estas entran al sistema a 17 ˚C y las papas peladas salen a 35 ˚C; además del sistema sale una corriente residual a 60 ˚C. Los calores específicos de las papas sin pelar de la corriente residual y de las papas peladas son:

Cppapas sin pelar = 3.7 Cap_6-_6.png Cpresidual = 4.2 Cap_6-_6.pngCppapas peladas = 3.5 Cap_6-_6.png




La entalpia de vapor Hv = 2750 KJ/Kg. Calculas las cantidades de corriente residual que salen del proceso y de las papas sin pelar.





Velocidad de un fluido por una tubería = V (cap61.JPG) / A (m2)

Para el escaldado de la habichuela se requiere de 300 Litros de agua /hora. El agua se toma del acueducto y se usa según el siguiente diagrama.

Cap_6_2.JPG

Calcular la cantidad de calor requerido para calentar al agua en el intercambiador, de calor perdido por el agua en el escaldado y el calor recuperado si se usa el calor del agua que sale del escaladado, enfriando hasta 30 ° C



Cap_6_3.JPG
Cap_6_4.JPG
Cap_6_5.JPG

Por la tubería de la siguiente figura fluyen 0.11 m 3 / s de un zumo de manzana (sg = 0.67) si la presión antes de la reducción es de 415 KPa. Calcule la presión en la tubería de 75 mm de diámetro.


cap_6_7.PNG
Evaporación

Operación que se usa para concentrar un sólido disuelto en un líquido la cual se pone a temperatura de ebullición la solución de manera que el líquido se volatilice y se deja el sólido más concentrado en la solución remanente.


Clasificación de evaporadores


Contacto Directo: El medio calentante (Gases de combustión, vapor entre otros) se mezcla con la disolución transfiriendo así su energía.

Contacto indirecto: La transferencia de calor es a través de tubos metálicos que separan al medio de calentamiento de la disolución, previniendo el mezclado.


cap_6_8.PNG




BALANCES DE ENERGÍA EN PROCESOS REACTIVOS

Calor de reacción o entalpia de reacción (Hi): es una diferencia entre la entalpia de productos y la entalpia de los reactivos para una reacción que se lleva a cabo bajo las siguientes circunstancias.

1). Se suministran cantidades estequiometrias de reactivos, y la reacción se efectúa completamente.

2). Los reactivos se suministran a temperatura T y presión P y los productos salen a la misma T y P.

Ejemplo:
CaC2(s) + 2H2O (l) -------------- Ca (OH)2(s) + C2H2 (g)
∆Hr; 25c, 1atm= -125.4 kg/mol

PROPIEDADES DE LOS COLORES DE FORMACIÓN

1). El calor estándar de reacción ∆Hr, es el calor de reacción cuando los reactivos y productos se encuentran a condiciones normales de P Y T.

2). Si ∆Hr <0 --- reacción exotérmica
Si ∆Hr >0 --- reacción endotérmica

Ley de Hess: implica que se puede medir los cambios de energía en reacciones y combinarlas de la forma que mas nos convenga, así como el hecho de que la energía en la reacción total es sencillamente una suma algebraica de las energías conocidas.

Ejemplo: Los colores estándar de las siguientes reacciones de combustión de se determinaron experimentalmente.

1. C2H6 + 7/2O2 ---- 2CO2 + 3H2O ∆Hr, 1=7559,8 Kg/mol
2. C + O2 ----- CO2 ∆Hr, 2=-393,5 Kg/mol
3. H2 + 1/2O2 ------ H2O ∆Hr, 3=-285,8 Kg/mol

Calcular el calor estándar de reacción para obtener:
2C + 3H2 ---- C2H6 ∆Hrr, 4=?
Multiplicamos la ecuación 2 x 2. La 3 x 3 y la 1 x -1
2x2 2C + 2º2 ---- 2CO2 ∆Hr, 2= -2x393.5 Kg/mol
3x3 3H2 + 3/2 ---- 3H2O ∆Hr, 3= -3x285.8 Kg/mol
1x-1 2CO2 + 3H2O ---- C2H6 + 7/2º2 ∆Hr, 1= -(-1) (1559,8) Kg/mol
2C + 3H2 ---- C2H6 ∆Hr.4= -84,6 Kg/mol

REACCIÓN DE FORMACION: Es la reacción en la que se forma el compuesto a partir de sus constituyentes atómicos como se encuentran normalmente en la naturaleza (por ejemplo, O2En vez De O)

CALOR ESTANDAR DE RACCION ∆Hºf

Nota: El calor estándar de formación de un elemento es cero.

-Calculo del calor de reacción a partir de los colores de formación
∆Hºr = ∑, Vi (∆Hºf) i - ∑ Vi (∆Hºr) i

-Calculo de calor normal de combustión: es el calor de reacción que se obtiene de la oxidación de las sustancia con oxigeno molecular

-Calculo del calor de reacción a partir del calor normal de combustión
∆Hºi = ∑ Vi (∆Hºc) i - ∑ Vi (∆Hºc) i

Vi: son los coeficientes Estequiométricos

Si cualquiera de los productos o reactivos son, a su vez, productos de combustión [CO2, H2O (L), So2, Etc.], los ∆Hºc deben ser cero.

Ejemplo: Calcular ∆Hºr para la combustión del n-pentano liquido, suponiendo que el H2O (L) es un producto de combustión.

Cs H12 (L) + 8º2(g) ----- 5CO2 (g) + 6H2O (L)

∆Hºf, CO2 (g)= -393,5 Kg/mol ∆HºC, C5H12(L) = -3509 Kg/mol
∆Hfº, H2O (L) = -285,8 Kg/mol
∆Hfº, C5H12(L) =-137 Kg/mol
∆Hfº, O2 = O kg/mol

∆Hºr= (5 x -393,5 – 6 x 285,8) Kg/mol – (-173 Kg/mol)
= (-1967,5 – 1714,8 + 173) Kg/mol
= - 3509.3 Kg/mol

BALANCES DE ENERGIA EN PROCESOS REACTIVOS
Se calcula con ∆H = Rar . ∆Hr/VA+ ∑ Salida niHi - ∑Entrada niHi


Donde:
A: cualquier reactivo o producto
nA,r= Moles de A que producen o consumen durante el proceso ( no necesariamente los moles que se alimentan o que están presentes en el producto )
√A: Coeficiente estequiometrico de A
Tanto NA,r como √A son valores positivos

Ejemplo:

yonatan orozco 15.JPG
yonatan orozco 16.JPG

yonatan orozco 17.jpg
yonatan orozco 18.jpg

Ejemplo:

yonatan orozco 19.jpg

yonatan orozco 21.jpg
Ejemplo:
El calor estándar de reacción a condiciones normales para la oxidación de amoniaco es de -904,6 Kg/mol. La reacción Es:
4NH3 (g) + 5º2(g) ----- 4NO (g) + 6H2O (g)
Un reactor se alimenta con 100 mol de NH3 por hora y 200 moles de O2/h a 25ºC. En donde el amoniaco se consume completamente. El flujo se productos sale como gas a 300ºC. Calcular el calor trasferido hacia o desde el reactor cuando se trabaja a una presión de 1 atmosfera.

Dibujoyor.JPG
Grado de avance
nNH3, sal = nNH3, entr – 4 є1
100mol/h / 4 =є
є= 25mol/h NH3

nO2, sal = NO2, entr – 5 є
nO2, sal = 200mol/h – 5(25) à 75mol/h. O2

nNo(g), sal = nNO(g),entr + 4 є
nNO (g), sal = 4(25) à 100mol/h NO

nH2O(g)sal = nH2O(g) , ent + 6є
nH2O (g) sal = 6(25) à 150mol/h H2O

Calcular entalpias
∆Ĥo2 = Cp (o2) dt = {25300 (6,117 + 3,167 x 10-3 T -1,005 x 10-6 T2) dt
= (6,117) (300-25) + 3,167 x 10-3 (300-25)2 /2 – 1,005x10-6 (300-25)2 /3
=1682,175 + 119,75 – 6,9669
=1794,958 cal/mol

∆ĤNO = {25300 (6,440+2,069x10-3 T- 0,4206x10-6T2) dt
=1846,3 cal/mol

∆ĤH2O = {25300 (7,136+2,640x10-3T+0,0459x10-6T2) dt
=2062,5cal/mol

Nota: los estados de referencia se toman a P y T normales, para ello se hace cero los reactivos o productos que se encuentran a las condiciones normales.

∆H = 100mol/h (-904,6kj/mol x 1kcal/4,184kj x1000cal/1kcal/ 4* (
75mol*h1794,958cal/mol + 100mol/h x 1846,3 cal/mol + 150mol/h x 2062,5cal/mol ]


∆H = -5405114,72 + [628626,85] cal/h


∆H = -4,8 x106cal/h